Gas Law	Charles' Law		Boyle's Law	
Variables Involved	Volume, Temperature of a		Pressure and volume	
	gas in Kelvin			
What is Constant?	Number of moles and		Number of moles and	
	pressure		temperature	
Formula	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$		$P_1V_1=P_2V_2$	
Graph	V (L) T(K)		P(kPa) V(L)	
Qualitative	At constant pressure, a gas'		At constant temperature, a	
Representation	volume is directly		gas' volume is inversely	
	proportional to the absolute (Kelvin) temperature.		proportional to its pressure.	
Data Example	T(K)	V(L)	V(L)	P(kPa)
•	0.00	0.00	10.0	100.
	150	22	20.0	50.0
	300.	44	40.0	25.0
Molecular Representation	ð Ç			

A Summary of the Gas Laws

Gas Law	Gay Lussac's Law	Avogadro's Law(only one way of representing it)	
Variables Involved	Pressure, Temperature of a gas in Kelvin	Moles and volume	
What is Constant?	Number of moles and volume	Pressure and Temperature	
Formula	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$	$\frac{V_1}{n_1} = \frac{V_2}{n_2}$	
Graph	P(kPa) T(K)	V(L) Moles	
Qualitative Representation	At constant volume, a gas' pressure is directly proportional to the absolut (Kelvin) temperature.	At constant temperature and pressure, a gas' volume is directly proportional to the number of moles, regardless of the type of ideal gas.	
Data Example	T(K) P(kPa) 0.00 0.00 150 100 300. 200	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Molecular Representation			