A Summary of the Gas Laws

Gas Law	Charles' Law	Boyle's Law
Variables Involved	Volume, Temperature of a gas in Kelvin	Pressure and volume
What is Constant?	Number of moles and pressure	Number of moles and temperature
Formula	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$	$P_{1} V_{1}=P_{2} V_{2}$
Graph		
Qualitative Representation	At constant pressure, a gas’ volume is directly proportional to the absolute (Kelvin) temperature.	At constant temperature, a gas' volume is inversely proportional to its pressure.
Data Example	T(K) $\quad \mathbf{V}(\mathbf{L})$	$\mathbf{V}(\mathbf{L}) \quad \mathbf{P}(\mathbf{k P a})$
	0.00 0.00	10.0 100.
	$150-22$	20.0 50.0
	300.	40.0 25.0
Molecular Representation		

Gas Law	Gay Lussac's Law		Avogadro's Law(only one way of representing it)	
Variables Involved	Pressure, Temperature of a gas in Kelvin		Moles and volume	
What is Constant?	Number of moles and volume		Pressure and Temperature	
Formula	$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$		$\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$	
Graph				
Qualitative Representation	At constant volume, a gas’ pressure is directly proportional to the absolute (Kelvin) temperature.		At constant temperature and pressure, a gas' volume is directly proportional to the number of moles, regardless of the type of ideal gas.	
Data Example	T(K)	$\mathbf{P}(\mathbf{k P a})$	moles	V(L)
	0.00	0.00		22.4
	150	100	2.00	44.8
	300.	200	4.00	89.6
Molecular Representation				

